
tObjectList: A real container for tObject descendants

I wrote this tool because of 3 areas where I felt Delphi was weak.
Delphi's containers are weak in two areas : Iteration and object disposal.
Delphi's stream support is un-documented. It's might be in there, but you have to do detective
work. As far as I know, non component streaming is not supported.

A container should give ways to iterate it's content easily. None of Delphi's containers (tStrings,
tStringList) have iterator functions.
As for disposal, an object container should free it's objects in it's own destructor. I'm not talking of
GUI objects here, but of real world objects. By this I mean non GUI objects. Let's not forget that
GUI is only a tool. The real work, the work we get paid for, is behind the GUI, and that is also
OOP. If a Form owns a container full of non-GUI objects, the container should take care of
disposing of it's content.

tStringList doesn't dispose of it's objects (it does free it's strings). This last problem would have
been easy to fix if it had been the only one, but we still have the streaming problem.
As far as I can tell, tStringList's stream support is limited to it's string content, even if it can hold
both objects and strings,

For those of you new to Pascal, tCollection was the container that came with BP7. I found
tCollection to be very fast and easy to use. It supported easy streaming and it had very good
iterator functions.

As to Streams, well if you don't have BP7 manuals you are out of luck because, for some reason,
BI decided not to document them, except for what is in the help files, which is not enough to get
starting.

I started out by looking at what was done in BP7 to achieve object persistence. You needed to
register each object for which you needed stream support. For that registration, you needed to
build a complex record giving information on the object and assigning a number. It was, over all,
complicated, but it worked. Now with Delphi we have new functions. We can query an object to
get its type name (the GetClassName method) and it's size.

This makes thing much easier. All we need to register is a tClass and 2 procedures: one that will
write the object to a tstream and one that will read it back in. Here is the format of the
RegisterClass procedure:

Procedure RegisterClass(const LoadProc,StoreProc:Pointer;Sender:tClass);

LoadProc & StoreProc are procedures that receive a single tStream parameter. Note that the
LoadProc is not a constructor, as it was in BP7.

Procedure MyClass.Load(S:tStream);virtual;
begin
...
end;

Once an Object has been registered and added to your tObjectList container, you can stream it
(or them) to disk, to memory or any medium as long as the stream descends from tStream. (With
this method, I can store my objects in a BTrieve record!).

As you'll probably notice, most of the code in this file comes from the BP7 RTL and the Delphi
RTL, namely the tCollection and tStrings classes. Some of the code was left unchanged, and
some was modified to some degree to suit my needs. Also, please forgive my English as it is my

second language...

Send bug reports or suggestions to
Robert Daignault
LPL Soft
Compuserve 70302,1653

Streams
The Load and Store methods (names are examples, you choose the names) of an object should
know how to
1- Write each of it's members in such a way that it will be capable of rebuilding itself in the Load
method.
2-Rebuild itself by reading the stream in the same order it was written.
If you think that's easy, well sometimes it isn't. You'll often have pointers in there. Don't try and
write pointers in a Stream, in won't work when you try and read it back.

Methods
These are the tObjectList methods and properties. If in doubt, check the source code.

Constructor Create;
Will create a standard tObjectList instance. Such an object will automatically grow, as needed
with build in increments. It will also dispose of it's objects when destroyed.

Destructor Destroy;
You should not call the Destroy method of a tObjectList instance. Call the Free method instead.
That's the standard way of disposing of an object.

function AddObject(Item: tObject): Integer; virtual;
AddObject will add Item to it's list at position Count-1. It will return the new count of items it now
contains.

procedure Clear; virtual;
procedure Delete(Index: Integer);
Procedure DeleteAll;

If you call these methods directly, they will not Free the items it contains. They simply delete the
pointer and compact the vector. Clear and DeleteAll are identical. If Index is out of bound, an
exception will be raised.

Procedure FreeAll;
Procedure FreeAt(Index:Integer);
Procedure FreeObject(Item: tObject);

The Free methods first call the object' s Free method, thus disposing them, and then calls the
Delete methods. FreeObject will raise an exception if Item cannot be found, Also if Index if out of
bound in FreeAt, an exception will be raised.

Procedure FreeItem(AnItem:Pointer); virtual;
tObjectList.Free methods call FreeItem to dispose an Item. FreeItem calls AnItem.Free to dispose
of AnItem. You can override FreeItem for special objects. (See also the DestroyObjects property
to modify this behavior).

function IndexOf(Item: tObject): Integer;
Use IndexOf to know the position of Item in the list. The result could be used to retrieve an item
by getting Item[Result] with the Item property.

procedure Insert(Index: Integer; Item: tObject); virtual;

Use to insert an object into a specific position.

procedure Move(CurIndex, NewIndex: Integer);
Use to move an object to a new position in the list.

procedure Pack;
Pack will compress the list. It will remove any NILL pointers by calling the Delete method for those
positions that contain a nil pointer.

Streaming support
The following 6 methods provide streaming support for the tObjectList class.

Constructor CreateFromStream(const FileName: string);
Use only on a file that was created with the SaveToStream method.

Procedure SaveToStream(const FileName:String);
Use to save a tObjectList to a disk file. Use CreateFromStream to rebuild.

procedure LoadFromStream(const FileName: string);
LoadFromStream will ADD a tObjectList stored on disk to the calling instance.

procedure ReadData(S: TStream); virtual;
procedure WriteData(S: TStream); virtual;

These two methods are called to store/retrieve a tObjectList. You should not have to call these
methods directly unless youre using a tMemoryStream. In that case, create the tMemoryStream
instance and call ReadData or WriteData with the tMemoryStream as parameter. An exception
will be raised if one of the contained objects is not registered.

procedure DefineProperties(Filer: TFiler); override;
Well the way I understand tFiler, tReader and tWriter, I think that's the way it should be done...
This has yet to be tested. Any help here would be appreciated.

Iteration support
For those of you coming from BP7, here are the highly used ForEach style iterators. For others,
these will need a bit of explaining.

Procedure ForEach(Action:Pointer);
The Action parameter you pass ForEach must meet 3 conditions:
1- It must be a the adress of a procedure in the form of:

Procedure DoAction(AnObject:tObject); far;
The name is not important, you chose that.
2- It must be an embedded procedure. If you think that's to complicated for nothing, think again,
It's far easier that way because you don't need global variables.
3- It must be declared far (Forgetting to declare the DoAction procedure as Far will very quickly
GPF on you!).

ForEach will call DoAction with each of it's tObject. You can query AnObject to get it's type using
it's ClassType method.

Function FirstThat(TestFunction:Pointer):tObject;
Function LastThat(TestFunction:Pointer):tObject;

Both these iterators will call the TestFunction with each of it's tObject until TestFunction returns
True. At that point FirstThat and LastThat will exit with the tObject that caused TestFunction to
return True. If TestFunction never returns true, FirstThat and LastThat will return NIL. FirstThat

iterates from Items[0] to Count-1. LastThat iterates from Count-1 downto 0;

Function First:tObject; virtual;
Function Last:tObject; virtual;
Function Next(Item:tObject; Forward:Boolean):tObject; virtual;

These are simple iterators. Their use should be pretty obvious. First and Last will return Nil when
empty (No exception raised). Next will return the object following Item when Forward is TRUE (or
Nil if at end) , and the preceding object when Forward is False (or Nil if at start). Next will raise
an Exception if Item is not in it's list.

Properties

Count : Integer;
Use the count property when you need to how many objects are contained in the tObjectLister
instance. Note that Count is read-only.

Items:[Index:Integer];
Use Items to access one of the tObject directly. If Index is out of range (that is if higher than
Count-1, or <0), the tObjectLister will raise an exception of type EListError. For example, to
access the third item in the tObjectList instance, use Items[2]

Capacity:Integer;
This is the current size of the Container, it's different than the Count property. Since tObjectLists
will automatically grow, as required, you should seldom use this property, but it's there if you need
it. For example, setting Capacity to 100 will grow the instance to 100 positions in one call. This is
usefull while constructing a new instance if you know in advance how many objects it will contain.

DestroyObjects:Boolean;
By default, DestroyObjects is TRUE, thus all contained objects are destroyed when the instance
is freed. Note that this property affects also all Free type methods. If FALSE FreeItem will not call
the object's Free method.

